Department of Chemistry Semester – II Physical Chemistry – I Sub. Code: CC1721 Teaching Plan

Unit	Module	Торіс	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
I.	Gaseous St	tate				
	1.	Kinetic molecular theory of gases, Derivation	2	To understand the importance of kinetic theory of gases	Lecture, Discussion	Evaluation through short test,
	2.	Types of molecular velocities	3	To define and differentiate various types of molecular velocities	Lecture, Discussion	Formative assessment
	3.	Heat capacities of ideal gases	2	To gain knowledge about molar heat capacities	Lecture	Formative assessment
	4.	Principle of equipartition of energy	3	To get idea about the distribution of energy	Lecture	Formative assessment, Short test
	5.	Real gases , Vanderwaal's equation of state	2	To differentiate real and ideal gases	Question answer session Lecture	Formative assessment, Assignment
II.	Liquid Sta	te				
	1.	Structure and properties of liquids	2	To know the structure and properties of various liquids	Lecture with PPT Illustration	Formative assessment
	2.	Surface tension, effects	2	To know the effects of surface tension	Lecture, Illustration	Formative assessment
	3.	Co efficient of viscosity, effect of temperature and pressure.	2	To understand the effect of various factors on viscosity	Lecture, Discussion	Formative assessment, Short test
	4.	Additive and constitutive properties	4	To correlate molar volume and viscosity with chemical constitution	Lecture, Discussion	Formative assessment, Online Quiz
III	Solid State					
	1.	Symmetry in crystal systems	2	To know about different types of crystals	Lecture, Illustration	Formative assessment, Assignment

	2.	Space lattice and unit cell, Bragg's equation	3	To derive Bragg's equation	Lecture, Illustration	Formative assessment
	3.	X-ray diffraction, analysis of crystal structures	4	To analyse the diffraction patterns of crystals	Lecture	Formative assessment Short test
	4.	Types of crystals	3	To recognise the various types of crystals	Lecture with PPT Illustration	Seminar, Formative assessment
IV	Ionic Equi	libria		, , , , , , , , , , , , , , , , , , ,		
	1.	Electrolytes, Types	2	To know about different electrolytes	Lecture	Formative assessment
	2.	Ionic product of water, common ion effect.	1	To understand and differentiate ionic product and common ion effect.	Lecture, Discussion	Formative assessment, Short test
	3.	pH scale – buffer solutions ,Henderson equation	2	To acquire knowledge about various pH ranges and buffer.	Lecture	Short test
	4.	Hydrolysis of various salts	3	To evaluate the hydrolysis constants.	Lecture, Discussion	Formative assessment
	5.	Acid base indicators-Types	2	To know different acid base indicators	Lecture	Formative assessment
V	Colloids				•	
	1.	Classification and types of colloids	4	To classify different colloids	Lecture, Discussion	Formative assessment
	2.	Preparation and properties of colloids	3	To gather knowledge regarding the preparation of colloids	Lecture	Formative assessment
	3.	Surfactants- actions and applications	1	To understand the action of surfactants and applications	Lecture, Illustration	Formative assessment, Short test
	4	Emulsions, emulsifiers	4	To classify emulsions and assess the action of emulsifiers	Lecture, Discussion	Formative assessment, Seminar

Course Instructor: Sr. K. Francy

HOD: G. Leema Rose

Semester II & IV Allied Chemistry – Inorganic & Physical Chemistry Sub. Code: CA1721 Teaching Plan

Unit	Module	Торіс	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Hydrogen a	and water				
	1	Types of hydrogen – nascent hydrogen, active hydrogen, atomic hydrogen, ortho and para hydrogen Hydrogen as a future fuel	3	Know the types and importance of Hydrogen	Lecture	Group discussion
	2	Dueterium and tritium – preparation, properties and uses.	2	Explain the physical and chemical properties of deuterium and tritium	Lecture, quiz	Group discussion
	3	Water: Hardness types, determination of degree of hardness by EDTA method	3	Determine the hardness of water	Lecture with ppt	Formative assessment - I
	4	Heavy water: Preparation, properties and usesDO, BOD and COD (definition only).	4	Detect water pollution	Lecture with ppt	Formative assessment - I
II	Metallurgy					•
	1.	Minerals and ores – difference between them	2	Differentiate between minerals and ores	Lecture	Multiple choice questions
	2.	Methods of dressing – roasting, calcinations, reduction by aluminothermic process, smelting, purification by electrolysis, zone refining, Kroll's process and Van Arkel de-Boer method.	4	Explain the methods of processing of ores	Lecture with ppt	Multiple choice questions

	3.	Extraction, properties and uses of titanium, molybdenum and tungsten	3	Know the process of extraction of Ti and W	Lecture	Group discussion
	4.	Preparationanduses $-$ TiO2andTiCl4,preparationandpropertiesofMoO2.	3	Explain the preparation and uses of TiO_2 and $TiCl_4$	llustration Lecture	Group discussion
III	Thermodyr	namics				
	1.	Exothermic and endothermic reactions with examples, change of enthalpy in a chemical reaction – sign of Δ H	3	Differentiate exothermic and endothermic reactions	Lecture with ppt	Formative assessment - II
	2.	Hess's law of constant heat summation, first law of thermodynamics – definition and mathematical statement	4	Define the laws of thermodynamics	Illustration	Formative assessment - II
	3.	Reversibleandirreversible $-$ processes $-$ differencebetweenthem.Isothermalandadiabaticprocesses $-$ expression for q, w, ΔE ΔE & ΔH forreversibleisothermalexpansionofandideal gas.	4	Derive the expression for q , w, $\Delta E \& \Delta H$ for reversible and irreversible isothermal expansion of an ideal gas.	Lecture	Illustration, Seminar
IV	Electrocher					
	1.	Strong and weak electrolytes with examples – degree of ionization	2	Explain strong and weak electrolytes	Lecture with ppt	Quiz
	2.	Factorsaffectingdegreeofionization-ionizationconstant-ionicproductof	3	Understand the factors affecting ionisation	Lecture	Quiz

		water pH scale				
		common ion effect				
		and its applications				
	3.	Salt hydrolysis –	3	Explain the	Lecture	Short test
		types of salts with		types of salts		
		examples,				
		derivation of				
		hydrolysis constant				
		and degree of				
		hydrolysis of a salt				
		formed from weak				
		C				
		base			.	G1
	4.	Buffer solutions	3	Define buffer	Lecture	Short test
		with examples.		solutions,	with ppt	
		Solubility,		solubility and		
		solubility product		solubility		
		and its		product		
		applications.				
V	Nuclear Ch					
	1.	Radioactivity	2	Explain the	Lecture	Assignment
		properties of α , β		properties of α,		
		and γ rays		β and γ rays		
	2.	Soddy's group	4	Derive	Lecture	Assignment
		displacement law –		expression for	with ppt	U
		radioactive decay,		radioactive		
		derivation of decay		decay constant		
		constant, half life		accuy constant		
		period- derivation				
		from decay				
		constant				
	3.		3	Distinguish	Lecture	Formative
	5.	0	5	Ū.	Lecture	
		radioactive series.		between		assessment -
		Nuclear reactions -		different types		Ш
		nuclear fission and		of nuclear		
		fusion – Stellar		reactions		
	-	energy.			~	
	4.	Applications of	2	Know the	Group	Formative
		radioactivity – in		applications of	discussion	assessment -
		medicine,		radioactivity		III
		agriculture,				
		industry and radio				
		carbon dating.				
	0		C		1	

Course Instructor: R. Gladis Latha

HOD: G. Leema Rose

NMEC Semester II Fuel Chemistry Sub. Code: CNM172 Teaching Plan

Unit	Module	Торіс	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Energy so	irces		·	•	•
	1.	Renewable energy sources-Types of energy, definition and examples	2	To know the different types of renewable energy sources	Lecture, Discussion	Evaluation through short test, Online Quiz, Assignment,
	2.	Non-renewable energy sources, Types and examples.	2	To identify the different types of non renewable energy sources	Lecture, Discussion	Formative assessment
	3.	Types of fuels, determination of calorific value	2	To determine the calorific value of a fuel.	Lecture	Formative assessment
	4.	Classification of fuels, criterion for the selection of a fuel, properties of fuels	3	Analyse various factors to select a good fuel	Lecture Question answer session	Formative assessment, Short test
II	Solid fuels		_			
	1.	Natural, artificial and industrial solid fuels.	2	Identify the sources, and types of solid fuels.	Lecture with PPT Illustration	Formative assessment
	2.	Formation of coal, properties and classification	3	To classify different types of coal.	Lecture, Illustration	Formative assessment
	3.	Role of Sulphur and ash in coal, Advantages and disadvantages of solid fuels	2	To impart knowledge on the impurities in coal	Lecture, Discussion	Formative assessment, Short test
	4.	Preparation, composition and uses of coal gas, Fractionation of coal tar, liquefaction of coal.	2	To know the composition and uses of coal gas and fractionation of coal tar	Lecture, Discussion	Formative assessment, Online Quiz

III	Liquid fu	el				
	1.	Petroleum and petrochemicals, Refining of petroleum	2	To attain knowledge on petrochemicals and refining of petroleum.	Lecture	Formative assessment, Assignment
	2.	Composition and uses of main petroleum fractions, Cracking-types, advantages.	3	To clarify various petroleum fractions and the formation of different compounds.	Lecture, Discussion	Formative assessment
	3.	Octane rating, cetane rating, Petrochemicals	2	To get a clear idea about octane and cetane number	Lecture	Formative assessment Short test
	4.	Catalysts used in petroleum industry, methods involved in the manufacture of petrochemicals.	3	To have an exposure about the catalysts and methods used in petroleum industry.	Lecture, Discussion	Seminar, Formative assessment
IV	Gaseous f	Gaseous fuel – Classification, examples and their importance.	3	To classify gaseous fuels	Lecture	Formative assessment
	2.	Natural gasoline – aviation gasoline – artificial gaseous fuels	2	To learn about the types of gasoline	Lecture, Discussion	Formative assessment, Short test
	3.	Water gas and producer gas - manufacture, composition and uses	2	To focus on the manufacture and nature of water and producer gases.	Lecture, Discussion	Short test
	4.	Semi water gas and LPG – composition and uses. Bio gas generation	2	To learn the generation of bio gas.	Lecture with PPT Illustration	Formative assessment
V	Rocket an	d Nuclear fuels Solid and liquid propellants , Homogeneous and heterogeneous	2	To classify the different fuels.	Lecture, Discussion	Formative assessment

	propellants				
2.	Propellants used in	2	To identify the	Lecture	Formative
	rocket and guided		propellants used		assessment
	missiles.		in rockets.		
3.	Nuclear	2	To impart	Lecture	Formative
	propellants, fertile		knowledge on	with PPT	assessment,
	materials, Nuclear		nuclear	Illustration	Short test
	fuel cycle in India		processes.		
4.	Heavy water	3	To focus on	Lecture	Formative
	reactor and fast		various reactors.	with PPT	assessment,
	breeder reactors			Illustration	Seminar

Course Instructor: Sr.Francy

HOD: G. Leema Rose

Semester IV Organic Chemistry – II Sub. Code : CC1741 Teaching Plan

Unit	Module	Description	Hours	Learning outcome	Pedagogy	Assessment / evaluation
Ι	Carbony	1 Compounds				
	1	Structure, reactivity and general methods of preparation of aldehydes and ketones	2	Interpret the structure of aldehydes and ketones	Lecture method	Short test, MCQ, Assignment
	2	Nucleophilic addition and condensation reactions	1	Differentiate addition and condensation reactions	Lecture method	Evaluation through short test, Online Quiz, Assignment,
	3	Mechanisms of Aldol condensation	1	Apply the mechanism to other condensation	Seminar	Formative assessment
	4	Benzoin condensation, Knoevenagel condensation	2	Evaluate the condensation reactions	Seminar	Formative assessment
	5	Perkin & Cannizzaro reaction and Benzil- Benzilic acid rearrangement.	2	Recognise rearrangements	Lecture method	Formative assessment, Short test
	6	Baeyer-Villiger - oxidation	1	Describe oxidation	Power point	Formative assessment, Short test
	7	Reductions Clemmensen, Wolff-	2	Relate the reduction process of various	Lecture method	Formative assessment,
		Kishner, LiAl H_4 and NaB H_4 reductions.		reducing agents		Short test
II		lic Acids and their Deriva		Γ		1
	1	Preparation and reactions of monocarboxylic acids	2	Learn the various methods of preparation	Lecture method	Short test, MCQ, Assignment
	2	Typical reactions of dicarboxylic acids, hydroxy acids	2	Understand the different reactions of acids	Semina	Evaluation through short test, Online Quiz, Assignment,

	3	Typical reactions of unsaturated acids -	3	Compare the reactions of various	Power point	Formative assessment
		succinic, phthalic, malic, tartaric, maleic and fumaric acids.		unsaturated acids		
	4	Preparation and reactions of acid chlorides, anhydrides, esters and amides	2	Know the various methods of preparation	Lecture method	Formative assessment
	5	Mechanism of Claisen condensation and Hofmann rearrangement	2	Apply the mechanism in rearrangements	Lecture method	Formative assessment, Short test
III		nal Groups Containing Nit	-		-	
	1	Preparationandimportantreactionsofnitrocompounds,nitrilesand iso nitriles	2	Interpret the structure and reactions of nitro compounds	Lecture method	Short test, MCQ, Assignment
	2	Preparation of amines Gabriel phthalimide synthesis, properties	1	Learn the various methods of preparation	Lecture method	Evaluation through short test, Online Quiz, Assignment,
	3	Carbylamine reaction, Hoffmann's exhaustive methylation	2	Interpret the mechanisms	Lecture discussion	Formative assessment
	4	Hofmann elimination reaction; distinction among 1°, 2° and 3° amines with Hinsberg reagent and nitrous acid.	3	Differentiate 1°, 2° and 3° amines	Lecture method	Formative assessment
	5	Preparation of diazonium Salts and synthetic applications	2	Learn the various methods of preparation	Lecture method	Formative assessment, Short test
	6	Curtius rearrangement	1	Apply the mechanism in	Power point	Formative assessment,
				rearrangement		Short test
IV	-	nethylene compounds		· · ·	T _	
	1	Reactivity of active methylene group.	1	Know the importance of active methylene group	Lecture method	Short test, MCQ, Assignment
	2	Preparation and properties of acetoacetic ester	1	Understand the various methods of preparation	Lecture method	Evaluation through short test, Online Quiz, Assignment,
	3	Acid hydrolysis and	1	Differentiate acid and	Seminar	Formative

		ketonic hydrolysis		ketonic hydrolysis		assessment
	4	Synthetic applications of acetoacetic ester - synthesis of mono alkyl acetone	1	Recognize the advantage of acetoacetic ester	Power point	Formative assessment
	5	Synthesis of butanoic acid, 2 - pentanone, acetonyl acetone,	1	Learn the various synthesis	Lecture method	Formative assessment, Short test
	6	Synthesis of succinic acid, α , β unsaturated acid, 2,5 – diketone, 1,3 – diol, γ - keto acid and 4 - methyl uracil Preparation of Malonic ester and its synthetic applications	2	Know the importance of synthesis	Lecture method	Formative assessment, Short test
	7	Synthesis of pentanoic acid, succinic acid, pentanedioic acid, adipic acid synthesis of β - keto acid, α,β - unsaturated acid, cyclo alkane carboxylic acid and barbituric acid	2	Explain the various synthesis	Lecture method	Formative assessment, Short test
	8	Preparation, and synthetic applications of cyano acetic ester	1	Know the importance of cyano acetic ester	seminar	Formative assessment, Short test
	9	Synthesis of malonic acid, propionic acid, α , β unsaturated acid, succinic acid and β - amino ester, cycloalkanes. Relative stability - Baeyer's strain theory and modification.	2	Learn the various synthesis	Lecture method	Formative assessment, Short test
V	Aromati	ic hydrocarbons				
	1	Concept of Aromaticity and characteristics of aromatic compounds, Huckel's rule.	2	Know the difference between aromatic and non aromatic compounds	Lecture method	Formative assessment, Short test
	2	Aromatic character of cyclic hydrocarbons	1	Understand the aromatic character	Seminar	Formative assessment, Short test
	3	Benzene isolation, preparation and structure	2	Learn the preparation and structure	Lecture method	Formative assessment, Short test

4	Electrophilic aromatic substitution, halogenation, nitration	2	Differentiate substitution reactions	Seminar	Formative assessment, Short test
5	Mechanisms of sulphonation, Friedel- Craft's alkylation and acylation.	2	Interpret mechanisms	Power point	Formative assessment, Short test
6	Ortho, para and meta Directing effects of the groups	2	Predict the Ortho, para and meta Directing effects of the groups	Lecture method	Formative assessment, Short test

Course Instructor: Dr.M.Anitha Malbi

HOD: G. Leema Rose

Semester – IV Paper VI- Elective II –Industrial Chemistry – II Sub. Code: CC1743 Teaching Plan

Unit	Module	Topics	Lecture hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Petroleu	m Industry				
	1	Petroleumandpetrochemicals, refiningofpetroleum,composition and uses ofmainpetroleumfractions	1	Understand the refining process of petroleum its composition and uses	Lecture with PPT	Short test
	2	Cracking, thermal and catalytic cracking, advantages of catalytic cracking and Octane number.	2	Gain knowledge on Cracking process	Lecture	Multiple choice questions
	3	Cetane number, ignition and flash points, anti knock agents, unleaded	2	Know the different characteristic of	Lecture and Question answer	Assignment Formative assessment -I
		petrol, anti diesel knock agents and hydrocarbons from petroleum.		petroleum	session	
	4	Petrochemicals, direct and indirect petrochemicals, Methods involved in manufacture of petrochemicals, alkylation, pyrolysis, halogenation, hydration and polymerization.	2	Learn the catalysts used in petroleum industry and the manufacture process of petrochemicals	Lecture, Seminar	Short test

	5	Classification of petrochemicals, examples. Manufacture of synthetic petrol by Bergius process and Fischer – Tropsh process.	2	Classify the petrochemicals	Lecture with PPT and Question answer session	Assignment Formative assessment
	6	Manufacture and uses of petrochemicals, Methanol, Ethanol, Isopropyl alcohol, formaldehyde, Ethylene glycol, Glycerol, Phenol and Acetone.	2	Know the manufacture and uses of petrochemicals	Lecture	Quiz
	7	Catalysts used in petroleum industry. Petrochemical Industries in India.	1	KnowtheCatalystsusedandPetrochemicalIndustriesinIndia	Group discussion	Assignment, Formative assessment
Π	Fertilize	rs and agro chemicals				
	1	Plant nutrients, Macronutrients, Micronutrients. Need for fertilizers, characteristics of a good fertilizer. Role of N, P and K in plant growth , Classification of fertilizers, Natural fertilizers and artificial fertilizers.	2	Understand the need for fertilizers and characteristics of a good fertilizer.	Lecture, Seminar	Short test
	2	Classification, manufacture and uses of artificial fertilizers such as Urea, Calcium cyanamide, Calcium	2	Knowtheclassificationandmanufactureartificial	Lecture with PPT and Question answer session	Assignment, Formative assessment
		ammonium nitrate Superphosphate of lime-Triple superphosphate, Potassium chloride and DAP.		fertilizers		
	3	NPKfertilizers,Biofertilizersanditsadvantages.advantages.AgrochemicalsandClassification.reparationandPreparationandUsesofLeadarsenateandand	3	Understand the advantages of Biofertilizers	Group discussion	Quiz

	4	Preparation and Uses of Calcium arsenate, DDT, Methoxychlor, BHC, Chlordane, Parathion, Malathion and Baygon Preparation and Uses of Fungicides like Lime, Sulphur, Bordeaux mixture, Sodium sulphate and Thallium Sulphate.	2	KnowthePreparationandUsesofInsecticidesKnowthePreparationandUsesofFungicides	Group discussion Lecture with PPT	Short test Assignment ,Formative assessment
	6	Preparation and uses of Weedicides like Butachor, Eptam (EPTC) and DNOC.	1	LearnthePreparationandUsesofweedicides	Lecture with PPT	Quiz
	7	Preparation and uses of Rodenticides like Zinc phosphide, Aluminium phosphide, Coumachlor and Warfarin	1	KnowthePreparationandUsesofRodenticides	Group discussion	Multiple choice questions
III	Rubber					
	1	Importance of rubber Latex , Coagulation of rubber, Refining of Crude rubber and Drawbacks of raw rubber Rubber fabrication Vulcanisation,	3	Understand the Importance and Refining of rubber	Lecture with PPT Lecture with PPT	Short test Assignment, Formative
		TechniquesofvulcanisationandProperties of vulcanisedrubber		Vulcanisation Techniques		assessment
	3	Physical and chemical properties of rubber, Solvents for natural rubber and its Classification	2	Learn the properties of rubber	Group discussion	Quiz
	4	Synthetic rubber and its classification. Manufacture, Properties and uses of Buna-S	1	Know the Manufacture and Properties of rubber	Lecture with PPT and Question answer session	Multiple choice questions
	5	Properties and uses of Neoprene, Buna- S,Thiokol, Silicon rubber, Polyurethane and Spandex	1	UnderstandthePropertiesandusesofNeoprene,Buna-SandThiokol	Group discussion	Quiz

IV	6 Matche	Properties and uses of Reclaimed, Spong, foam, laminates, rubber cement and thermocole .Applications of rubber. s and explosives	1	Know the applications of rubber.	Lecture with PPT and Question answer session	Assignment
	1	Safetymatches,Classificationanditscomposition.ManufactureofSafetymatches.Pyrotechnologyandcompositionoffireworks.	2	Learn the classification, composition and Manufacture of Safety matches.	Lecture with PPT and Question answer session	Short test
	2	Explosives and its Characteristics. Characteristics of Low explosives, Gun powder and Smokeless powder. Preparation and uses of Primary explosive like Lead azide	3	Know the Characteristics of explosives and its preparation.	Lecture with PPT	Assignment
	3	Preparation and uses of Primary explosives like Mercury fulminate, Diazodinitrophenol, Tetryl, Ethylene dinitramine. High explosives, Trinitrotoluene, Picric acid and Ammonium picrate	2	Know the Preparation and uses of Primary explosives	Lecture with PPT	Quiz
	4	Glyceryl trinitrate, Dynamite, PETN, Cyclonite and HMX. Toxic chemicals	1	Understand the effect of Toxic chemicals	Group discussion	Multiple choice questions
	5	Preparation and properties of Mustard, Phosgene, Nerve gases, Adamsite, Chloroscatophenopo	2	UnderstandthePreparationandpropertiesofToxic chemicals	Lecture with PPT and Question answer	Quiz
	6	Chloroacetophenone and Chloropicrin. Screening of smokes, Incendiaries and Explosives in India.	2	Know the Explosives in India.	session Lecture with PPT	Short test
V	Protectiv	ve coatings and silicates		1		

	Definitio Classification and Composition of Paints Manufacture and Process of setting of paint, Requirements of a good paint and Importance of pigment volume concentration Applications. Emulsion	2	Learn the Classification and Composition of paints	Lecture with PPT and Question answer session Group	Short test Assignment
	paints, Constituents, advantages, methods of manufacture, chemical action and paint removers.		Applications and chemical action of paints	discussion	
3	DefinitionClassificationandmanufactureofVarnishes.RawmaterialsandcompositionofVarnishes.Definition,Compositionandimportance lacquers	2	Know the Classification and manufacture of Varnishes and Lacquers	Lecture with PPT and Question answer session	Quiz
4	Definition of Cement, Raw materials used in the Manufacture of cement and Setting of cement.	1	UnderstandtheManufactureprocessofcement	Lecture with PPT	Multiple choice questions
5	Properties Quality test and uses of cement. Manufacture, Physical and Chemical properties of Glass. Preparation and uses of Special glasses like fused silica glass, Vycor glass, optical glass, lead glass, coloured glass, opal glass, safety glass, fibre glass laminates, glass wool and flint glass.	2	Understand the Physical and Chemical properties of glasses	Lecture with PPT	Quiz
6	Pyrex and jena glasses, Definition and classification of Refractories. Definition, uses, classification of Abrasives. Natural abrasives and Synthetic abrasives.	2	Know the uses and classification of Refractories and abrasives.	HOD: G L	Short test

Department of Chemistry Teaching Plan Even Semester 2019

Course Outcome

Major Core VIII

Semester	: VI
Name of the Course	: Organic Chemistry IV
Course code	: CC1761

CO -**Course Outcome** PSO CL No. **Upon completion of course** students will be able to recognize optical activity and the CO - 1 **PSO - 1** R types of isomerism CO - 2 interpret the principles of **PSO - 3** Ap spectroscopy and photochemistry CO - 3 apply spectral rules to calculate λ_{max} PSO - 6 Ap values evaluate different spectra CO - 4 PSO - 5 Е CO - 5 apply ir spectra in functional group PSO - 6 С analysis know the medicinal importance and CO - 6 PSO - 8 С elucidate the structure of alkaloids classify, differentiate and synthesise <u>C</u>O - 7 **PSO - 2** An various dyes

Unit	Section	Торіс	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation		
Ι								
	1.	Optical activity and Chirality	2	To understand the importance of optical isomerism	Lecture, Discussion	Evaluation through short test		
	2.	R-S notation, enantiomers and diastereomers	3	To differentiate enantiomers and diastereomers	Lecture, Discussion	Formative assessment		
	3.	Optical activity of compounds without asymmetric carbon atoms	2	To gain knowledge about optical activity	Lecture	Formative assessment		
	4.	Methods of distinguishing geometrical isomers, determination of configuration of ketoximes	3	To get idea about geometrical isomerism	Lecture	Formative assessment, Short test		
	5.	Conformational analysis of ethane, n-butane and cyclohexane energy diagrams.	2	To differentiate different energy diagrams	Question answer session, Lecture	Formative assessment, Assignment		
II	Spectrosc							
	1.	General principles, introduction to absorption and emission spectroscopy	2	To know about principles of spectroscopy	Lecture with PPT Illustration	Formative assessment		
	2.	Types of electronic transitions- bathochromic and	2	To know the types of electronic transitions	Lecture, Illustration	Formative assessment		

Total Contact hours : 60 (Including lectures, assignments and tests)

		hypsochromic shifts				
	3.	Application of Woodward Rules for calculation of λ_{max} for different molecules	2	To understand clearly about the calculation of λ_{max}	Lecture, Discussion	Formative assessment, Short test
	4.	Photochemical reactions of ketones, Norrish type I and type II reactions	4	To study about photochemica l reactions	Lecture, Discussion	Formative assessment, Online Quiz
III	Spectroso					
	1.	Molecular vibrations and origin of IR spectra - IR absorption positions of O, N and S containing functional groups	2	To know about molecular vibrations	Lecture, Illustration	Formative assessment, Assignment
	2.	Hydrogen bonding, conjugation,. IR absorptions- fingerprint region	3	To learn about fingerprint region	Lecture, Illustration	Formative assessment
	3.	Basic principles of Proton Magnetic Resonance, chemical shift and factors influencing it	4	To analyse the factors influencing chemical shift	Lecture	Formative assessment Short test
	4.	Interpretation of NMR spectra of simple compounds	3	To recognise the various spectra compounds	Lecture with PPT Illustration	Seminar, Formative assessment

IV	Alkaloids	s and Terpenoids				
	1.	Natural occurrence, structural features and isolation of alkaloids	2	To know about different alkaloids	Lecture	Formative assessment
	2.	Structural elucidation and synthesis of coniine, piperine and nicotine.	1	To understand and differentiate different alkaloids	Lecture, Discussion	Formative assessment, Short test
	3.	Significance of number of peaks and peak area. Spin-spin coupling and coupling constant.	2	To acquire knowledge about peaks and coupling constant	Lecture	Short test
	4.	Occurrence and classification of Terpenoids, isoprene rule	3	To evaluate and classify terpenoids	Lecture, Discussion	Formative assessment
	5	Elucidation of structure and synthesis of citral, geraniol, menthol and α- terpeniol.	2	To know about the structure of various terpenoids	Lecture	Formative assessment
V	Dyes					
	1.	Classification based on application and chemical structure with examples.	4	To know about the classification of dyes	Lecture, Discussion	Formative assessment
	2.	Colour and constitution of dyes. Chemistry of dyeing	3	To gather knowledge regarding thecolour and constitution of dyes	Lecture	Formative assessment
	3.	Triphenyl methane dyes -	1	To understand the synthesis	Lecture, Illustration	Formative assessment,

	malachite green, rosaniline and crystal violet.		and application of dyes		Short test
4	Phthalein dyes - Phenolphthalei n and fluorescein. Anthraquinone dyes - Alizarin Indigo dyes- Indigo.	4	To learn the synthesis and applications of phthalein and anthraquinone dyes.	Lecture, Discussion	Formative assessment, Seminar

Course Instructor: G. Leema Rose

Course Outcome

Semester	: VI	Major Core IX
Name of the Course	: Inorganic Chemistry III	
Course code	: CC1762	

CO - No.	Course Outcome Upon completion of course students will be able to	PSO	CL
CO - 1	name the coordination compounds	PSO - 1	А
CO - 2	explain the theories of coordination compounds	PSO - 1	U
CO - 3	predict the colour, magnetic properties and geometry of coordination compounds	PSO - 2	С
CO - 4	analyse the nature of bonding in coordination compounds	PSO - 3	An
CO - 5	minimize the errors in chemical estimation	PSO - 5	An
CO - 6	employ the methods to separate the inner transition elements	PSO - 4	Ар
CO - 7	compare the properties of lanthanides and actinides	PSO - 2	An
CO - 8	explain the principles of gravimetric analysis	PSO - 1	U

Teaching Plan Total Contact hours : 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Lecture hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Co-ordina	ation chemistry I	1		I	
1	1	Double salts – co- ordination compounds – difference, definition and terminology – co- ordination complexes and complex ions – central ion and ligands – co-ordination number – co- ordination sphere – charge on a complex ion.	3	Know the difference between double salts and coordination compounds.	Lecture, Showing available coordination compounds and double salts.	Evaluation through short test
	2	Types of ligands - examples for each. Nomenclature of co- ordination compounds	2	Name the coordination compounds.	Group discussion	Evaluation through short test
	3	Isomerism in co- ordination compounds, structural isomerism – ionisation, hydrate, co- ordination, linkage and co-ordination position isomerism.	2	Know the types of isomerism exhibited by coordination compounds.	llustration Lecture	Assignment on isomerism
	4	Stereoisomerism – geometrical isomerism in tetrahedral and octahedral complexes - optical isomerism in octahedral complexes.	2	Know the types of isomerism exhibited by tetrahedral and octahedral compounds.	Lecture, Seminar	Evaluation through short test
II	Co- ordin	ation Chemistry – II			1	
	1	Theoriesofco-ordinationcompounds-Werner'stheory-postulates-verificationofWerner'stheory-cobaltamminecomplexes.	4	Know the theories of coordination compounds	Question answer session	Multiple choice questions

	2	EAN rule – calculation	3	Predict the	Lastura	Chart tost
	2		3		Lecture	Short test
		of EAN with reference		stability of		Formative
				metal		assessment – I
				complexes.		
	3	Pauling's theory	4	Predict the	Lecture with	Short test
		(VBT) – postulates -		structure of	ppt	Formative
		application of VBT to		complexes		assessment – I
		square planar and		using VBT.		
		tetrahedral complexes,		-		
		inner and outer			Group	
		complexes – merits			discussion	
		and demerits of VBT.				
		Shapes of d-orbitals.				
	4	Crystal field theory –	5	Apply CFSE	Assignment	
		Crystal field splitting	5	and predict	on CFSE	
		of tetrahedral, square		the stability	OILCIPL	
		· •		•		
		planar and octahedral		of		
		systems. Factors		complexes.		
		affecting the value of				
		CFSE – crystal field				Multiple choice
		splitting energy values				questions
		and its application in				
		the stability of				
		complexes.				
III	Co-ordin	ation chemistry – III			1	
	1	Molecular Orbital	3	Differentiate	Illustration,	
		Theorem (MOT) MO		strong and	Seminar	Short test
		Theory (MOT)- MO		strong and	Semma	Short test
		diagrams of ML_6 type		weak field	Serrina	Short lest
		• • •				Short test
		diagrams of ML ₆ type complexes – weak and		weak field	Seminar	Short test
		diagrams of ML ₆ type complexes – weak and strong field ligands –		weak field	50mma	Short test
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series.	3	weak field ligands.		
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal	3	weak field ligands. Predict the	Lecture,	Assignment
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability	3	weak field ligands. Predict the	Lecture,	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant –	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from thermodynamic data.	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from thermodynamic data. Irving William series –	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from thermodynamic data. Irving William series – stabilization of	3	weak field ligands. Predict the stability of	Lecture, Group	
	2	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from thermodynamic data. Irving William series – stabilization of unstable oxidation	3	weak field ligands. Predict the stability of	Lecture, Group	
		diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from thermodynamic data. Irving William series – stabilization of unstable oxidation state.		weak field ligands. Predict the stability of complexes.	Lecture, Group discussion	Assignment
	2 3	diagrams of ML ₆ type complexes – weak and strong field ligands – spectrochemical series. Stability of metal complexes – relation between stability constant and dissociation constant – factors affecting the stability of metal complexes from thermodynamic data. Irving William series – stabilization of unstable oxidation	3	weak field ligands. Predict the stability of	Lecture, Group	

		1 (1		
		complexes – trans		substitution		
		effect.		reactions of		
	1		2	complexes.	T .	
	4	Metal carbonyls -	3	Apply	Lecture,	Assignment
		classification –		coordination	Illustration	
		examples – structure		compounds		
		and nature of M-L		in qualitative		
		bond in metal		and		
		carbonyls – structures		quantitative		
		of mono, di and		analysis.		
		polynuclear carbonyls				
		of Ni, Cr, Fe, Co and				
		Mn. Application of				
		complexes in				
		qualitative and				
		quantitative analysis.				
IV	Transitio	n Elements:				
	1	. Group discussion	2	Know the		
		with special reference		general		
		to electronic		characteristic		
		configuration,		S		
		oxidation state,		of transition		
		spectral and magnetic		elements.		
		properties, colour,				
		variable valency-				
		polyvalency of				Multiple choice
		Vanadium-magnetic				questions
		and catalytic				
		properties, ability to				
		form complexes.				
	2	Difference between the	3	Differentiate	Lecture with	Formative
		first, second and third		the transition	ppt	assessment - II
		transition series.		series.		
		Extraction, properties				
		and uses of Cu, Co and				
		Ni. Preparation and				
		uses of titanium(II)				
		oxide, vanadium (V)				
		oxide, potassium				
		dichromate, potassium				
		permanganate, potassiu				
		m ferrocyanide,				
		Potassium				
		ferricyanide, Vaska's				
		compound, platinum				
		Piumum		I	1	1

		(IV) ablarida				
		(IV) chloride,				
		chloroplatinic acid and				
		purple of Cassius.			.	
	3	Inner transition	3	Know the	Lecture	
		Elements: Electronic		general		
		configuration,		characteristic		
		oxidation states,		s of inner		Quiz
		colour, spectral and		transition		
		magnetic properties.		elements.		
		Causes and				
		consequences of				
		lanthanide contraction				
	4	Extraction of	4	Compare	Lecture	Quiz
		lanthanides from		lanthanides		
		monazite sand -		and actinides		
		separation of		und detinides		
		lanthanides by ion-				
		exchange method -				
		uses of lanthanides.				
		Comparison between				
		lanthanides and actinides.				
	5		2	V	T 4	0
	5	Extraction, properties	Z	Know the	Lecture with	Quiz
		and uses of thorium		extraction of	ppt	
		and uranium - zinc		Th and U		
		uranyl acetate				
		,Uranium				
		hexafluroide.				
V	Analytica	l Chemistry		1		
	1	Types of errors-	3	Gain		
		determinate and		knowledge		
		indeterminate errors-		about errors.	Group	
		minimization of errors.			discussion	Short test
		Precision and				
		accuracy- Comparison				
		of precision and				
		accuracy with example				
	2	Standard deviation-	2	Calculate	Lecture.	Assignment
		mean deviation –		standard		-
		relative mean		deviation and		
		deviation and		mean		
		coefficient of variance.		deviation		
		Accuracy- absolute				
		error- relative error-				
		confidence limit-				
		Rejection of a doubtful				

3	value – Q Test and student T test . Principles and requirements of gravimetric analysis, gravimetric steps- digestion, filtration, washing, drying and ignition.	2	Apply the principles of gravimetric analysis.	Demonstrati on	Formative assessment – III
4	Mechanism of precipitation – factors affecting solubility of precipitate – co- precipitation- different types – prevention- post precipitation – prevention and difference between co- precipitation and post precipitation, precipitation, precipitation from homogenous solution with examples.	4	Apply the principles of gravimetric analysis.	Lecture using ppt	Formative assessment – III

Course Instructor: R.Gladis Latha

Course Outcome

Semester	: VI
Name of the Course	: Physical Chemistry III
Course code	: CC1763

CO - No.	Course Outcome Upon completion of course students will be able to	PSO -	CL
CO - 1	Recall phase rule.	PSO - 1	R
CO - 2	Understand phase diagrams	PSO - 1	С
CO - 3	Differentiate various photochemical processes	PSO - 4	U
CO - 4	Interpret Jablonski diagram	PSO - 4	Ар
CO - 5	Apply the electrochemical principles in batteries	PSO - 3	Ар
CO - 6	To deduce the expressions of rate constant	PSO - 5	An
CO - 7	Evaluate pH using electrodes.	PSO - 5	Е
CO - 8	Elucidate the structure of molecules using spectral data	PSO - 8	С

Teaching Plan Total Contact hours : 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Phase Equi	libria				
	1.	Concept of phase , components and degrees of freedom (definitions and examples) Derivation of Gibb's phase rule.	2	To derive Gibb's phase rule	Lecture, Discussion	
	2.	Phase diagram for one component system – water and sulphur system	2	Construct phase diagram for water and sulphur system	Lecture	
	3.	Two component system	1	To construct phase diagram for two component system	Lecture, Discussion	
	4.	Reduced phase rule and simple eutectic systems.	1	Construct phase diagram for simple eutectic system	Ppt presentation	Formative assessment,
	5.	Lead-silver system – Pattinson's process of de- silverisation of lead,freezing mixtures-KI-H ₂ O system	2	Understand de- silverisation and potassium iodide-water system	Lecture	Short test, Assignment, MCQ
	6.	Formation of compounds with congruent melting point	1	Understand congruent melting point	Ppt presentation	
	7.	Zinc-magnesium system and FeCl ₃ - H ₂ O system. Formation of compounds with incongruent melting points	2	Understand FeCl ₃ -H ₂ O system and incongruent melting points	Lecture	
	8.	Na ₂ SO ₄ -H ₂ O system and Solid-	1	Construct Na ₂ SO ₄ -H ₂ O	Lecture	

		gas equilibria		system		
	9.	CuSO ₄ -H ₂ O	1	Construct	Question	
		system.		CuSO ₄ -H ₂ O	answer	
				system	session	
					Lecture	
	10.	Efflorescen	1	Underst	Lecture,	
		ce, deliquescence		and	Discussion	
		and hygroscopy		Efflorescence,		
				deliquescence		
				and hygroscopy		
II	Chemical K	inetics				
	1.	Rate of	2	To know factors	Lecture	
		reaction, expression		influencing rate	with PPT	
		of rate, factors		of reaction and	Illustration	
		influencing rate of		theories of		
		reaction and		reaction rates		
		theories of reaction				
	2	rates	1	II. da nata a d	T. a. a fara wa	
	2.	Order and	1	Understand order and	Lecture,	
		molecularity of a reaction		molecularity of	Illustration	
		Teaction		a reaction		
	3.	Definition and	1	Differentiate	Lecture,	
	5.	examples,	-	order and	Discussion	
		differences between		molecularity of		
		order and		a reaction		Eamonations
		molecularity of a				Formative
		reaction				assessment, Short test,
	4.	Various orders of	2	Derive zero,	Ppt	Assignment,
		reaction and their		first and second	presentation	MCQ
		derivation zero,		order reaction.		Meg
		first and second				
		order reaction	1		.	
	5.	Definition,	1	Know rate	Lecture	
		examples and		constant and		
		derivation of rate		half life period of a reaction		
		constant and half life period.		or a reaction		
	6.	Methods of	2	Determine	Ppt	
	0.	determining order	-	order of	presentation	
		of reaction, use of		reaction	Presentation	
		Differential,				
		Integral, Half-life				
		method and				
		Ostwald's isolation				

		methods.				
	7	Concept of	1	Derive	Lecture	
		activation energy,		Arrhenius		
		effect of catalyst		equation		
		and calculation of		1		
		energy of activation				
		(Arrhenius				
		equation)				
	8	Collision theory of	1	Derive	Lecture	
		bimolecular		activated		
		gaseous reactions(complex theory		
		activated complex				
		theory)				
	9	Comparison of	1	Differentiate	Question	
		collision theory and		collision theory	answer	
		activated complex		and activated	session	
		theory.		complex theory	Lecture	
	10		2	Derive	Lecture,	
		Lindeman's		Lindeman's	Discussion	
		theoryofunimolecul		theoryofunimol		
		arreactions and		ecularreactions		
		solving problems		and able to		
				slove problems		
III	Flootnoohor	history I		in this topic		
111	Electrochen	Definition of	1	Know	Lecture,	
	1.	conductance,	1	conductance,	Illustration	
		specific		specific	musuunon	
		conductance,		conductance,		
		equivalent		equivalent		
		conductance and		conductance		
		molar conductance		and molar		
				conductance		
	2.	Factors affecting	1	Understand	Lecture,	Formative
		conductance of a		factors affecting	Illustration	assessment,
		solution		conductance of		Short test,
				a solution		Assignment,
	3.	Transport number,	1	Able to	Lecture	MCQ
		determination of		determine		
		transport number		transport		
		by Hittorf's method		number		
		and moving				
			1		1	
		boundary method	-		_	
	4.	Strong and weak	2	Able to derive	Lecture	
	4.		2	Able to derive Debye- Huckeltheory of	Lecture with PPT Illustration	

		equivalent conductance with dilution and Debye- Huckeltheory of strong electrolytes		strong electrolytes	0	
	5.	Debye- HuckelOnsagarequ ation.Kohlrausch'sl aw and its applications	2	Derive Debye- HuckelOnsagar equation and Kohlrausch'sla w	Question answer session Lecture	
	6.	Applications of conductance measurements	2	Understand the applications of conductance measurements	Lecture, Discussion	
	7.	Determination of λ infinity of weak acid and weak base and degree of dissociation of weak electrolytes	1	Determine degree of dissociation of weak electrolytes	Lecture, Illustration	
	8.	Solubility and solubility products of sparingly soluble salts and conductometric titrations and solvingproblems.	3	Understand solubility and solubility products of sparingly soluble salts and conductometrict itrations. Able to solve problems in this topic	Lecture	
IV	Electrochen	nistry – II				
	1.	Electrochemical cells ,chemical cells ,reversible and irreversible cells and determinationof EMF of cells	2	Understand Electrochemical cells –chemical cells – reversible and irreversible cells -EMF of cells	Lecture	Formative assessment, Short test, Assignment, MCQ
	2.	Cell representation,singl e electrode	1	Know various types of electrodes	Lecture, Discussion	

			ſ	
3.	potential,types of electrodes, metal- metal ion electrodes, amalgam electrodes and gas electrodes. Insoluble metal salt	2	Understand	Lecture
5.	electrodes and oxidation – reduction electrodes.Standard hydrogen electrode (SHE) and calomel electrode	2	standard hydrogen electrode (SHE) and calomel electrode	Lecture
4.	Derivation of Nernst equation	1	Derive Nernst equation for emf of cells	Lecture, Discussion
5.	Standard electrode potential, electro chemical series, thermodynamics of galvanic cells, $\Delta G, \Delta H, \Delta S$ and equilibrium constant (K).	2	To know electro chemical series and thermodynamic s of galvanic cells $\Delta G, \Delta H and \Delta S$ and equilibrium constant (K)	Lecture with PPT Illustration
6.	Concentration cells –with transference and without transference ,liquid junction potential and its elimination.	1	Understand Concentration cells with transference and without transference and liquid junction potential and its elimination	Question answer session Lecture
7.	Applications of EMF measurements ,determination of transport number, valency of an ion, pH of a solution using hydrogen, quinhydrone and glass electrode.	2	Able to grasp Applications of EMF measurements,d etermination of transport number, valency of an ion, pH of a solution using	Lecture, Discussion

	8	Potentiometric titrations - acid- base, oxidation reduction and precipitation titrations.	1	hydrogen, quinhydrone and glass electrode. Understand Potentiometric titrations	Lecture, Illustration			
	9	Decomposition potential and overvoltageand solving Problems	2	Know decomposition potential and overvoltage. Can able to solve problems from this topic	Lecture			
V	Spectroscopy							
	1.	Different regions of EMR spectrum, Born-Openheimer approximation ,types of molecular spectra – microwave (rotational) spectra theoretical principle, selection rule and applications in the determination of bond distance in diatomic molecules	4	To classify different regions of EMR and know about microwave spectroscopy.	Lecture, Discussion	Formative assessment, Short test, Assignment, MCQ		
	2.	Vibrational (IR) spectra – theoretical principle, harmonic oscillator and unharmonicity – selection rule, intensity, modes of vibrations and types , force constant , applications of IR– hydrogen bonding	3	To gather knowledge regarding Vibrational spectra(IR)	Lecture			

3.	,Inter and Intramolecular hydrogen bonding Fermi resonance, overtones and combination bands.	1	To understand Fermi resonance, over tones and combination	Lecture, Illustration
4	Electronic spectra - selection rules, Frank types of transitions and pplications. Raman spectra - theoretical principle ,stokes and antistokes lines	2	bands To know Electronic and Raman spectra	Lecture, Discussion
5.	Comparison of IR & Raman Spectroscopy.	1	Differentiate between Raman spectra and IR Spectra.	Lecture, Discussion
6.	ESR spectra- theory and principle and hyperfine splitting ESR spectra of methyl radical .	2	To understand ESR Spectra	Lecture, Illustration

Course Instructor: M. Anitha Malbi